Induction of neocortical long-term depression results in smaller movement representations, fewer excitatory perforated synapses, and more inhibitory synapses.

نویسندگان

  • G Campbell Teskey
  • Nicole A Young
  • Francine van Rooyen
  • Sarah E M Larson
  • Corey Flynn
  • Marie-H Monfils
  • Jeffrey A Kleim
  • Luke C Henry
  • Crystal D Goertzen
چکیده

Long-term depression (LTD) is one of the most widely investigated models of the synaptic mechanisms underlying learning and memory. Previous research has shown that induction of LTD in the neocortex decreases measures of pyramidal cell dendritic morphology in both layers III and V. Here, we investigated the effects of LTD induction on 1) the time course of recovery of synaptic efficacy, 2) movement representations, 3) cortical thickness and layer V neuron density, and 4) the density of excitatory and inhibitory synapses in layer V of sensorimotor neocortex. Rats carried a stimulating electrode in the midline corpus callosum and a recording electrode in the right sensorimotor neocortex. Each rat received either low-frequency stimulation composed of 900 pulses at 1 Hz or handling daily for a total of 20-25 days. Callosal-neocortical evoked potentials were recorded in the right hemisphere before and after stimulation or handling. Our results show that LTD induction lasts for 3 weeks and results in smaller motor maps of the caudal forelimb area. We did not observe any reduction in neocortical thickness or neuron density. There was a reduction in the density of excitatory perforated synapses and an increase in the density of inhibitory synapses in layer V of the sensorimotor neocortex, thereby providing a general mechanism for the reduction in motor map size. This study sheds light on the interaction between an artificial model of learning, receptive field characteristics, and synaptic number in the sensorimotor cortex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spike-timing-dependent plasticity of neocortical excitatory synapses on inhibitory interneurons depends on target cell type.

Repetitive correlated spiking can induce long-term potentiation (LTP) and long-term depression (LTD) of many excitatory synapses on glutamatergic neurons, in a manner that depends on the timing of presynaptic and postsynaptic spiking. However, it is mostly unknown whether and how such spike-timing-dependent plasticity (STDP) operates at neocortical excitatory synapses on inhibitory interneurons...

متن کامل

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

Long-term potentiation is associated with changes in synaptic ultrastructure in the rat neocortex.

Long-term potentiation (LTP) in the sensorimotor cortex of freely moving rats has been associated with changes in dendritic morphology and dendritic spine density. The current research examined changes in synaptic number and ultrastructure associated with LTP in this cortical region. LTP was induced over a 1 h period and the animals were sacrificed 2 h after the initial stimulation of the LTP g...

متن کامل

Hippocampal Interneurons Express a Novel Form of Synaptic Plasticity

Individual GABAergic interneurons in hippocampus can powerfully inhibit more than a thousand excitatory pyramidal neurons. Therefore, control of interneuron excitability provides control over hippocampal networks. We have identified a novel mechanism in hippocampus that weakens excitatory synapses onto GABAergic interneurons. Following stimulation that elicits long-term potentiation at neighbor...

متن کامل

Persistent synaptic activity produces long-lasting enhancement of endocannabinoid modulation and alters long-term synaptic plasticity.

Learning and memory are thought to involve activity-dependent changes in synaptic efficacy such as long-term potentiation (LTP) and long-term depression (LTD). Recent studies have indicated that endocannabinoid-dependent modulation of inhibitory transmission facilitates induction of hippocampal LTP and that endocannabinoids play a key role in certain forms of LTD. Here, we show that repetitive ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cerebral cortex

دوره 17 2  شماره 

صفحات  -

تاریخ انتشار 2007